sábado, 2 de abril de 2011

COMPLEMENTO: ACTIVACIÓN

INTRODUCCIÓN

En Inmunología, el sistema del complemento, es uno de los componentes fundamentales de la respuesta inmunitaria en la defensa, por ejemplo, ante un agente hostil. Consta de un conjunto de moléculas plasmáticas implicadas en una danza bioquímica coordinada, cuya función es de potenciar la respuesta inflamatoria, facilitar la fagocitosis y dirigir la lisis de células incluyendo la apoptosis. Constituyen un 15% de la fracción de inmunoglobulina del suero. No pertenece a la súper familia de las inmunoglobulinas.
La mayor parte de los factores del complemento son proteínas plasmáticas y una pequeña proporción de ellos son proteínas de membrana. Muchos de los componentes del complemento (C2, C3, C4, C6, C7, C8, Factor B y Factor I) son polimórficos, es decir que existen diferentes formas alélicas que se expresan con distintas  frecuencias en poblaciones o razas.
El hepatocito es el principal productor de factores del complemento. No obstante, por ejemplo los componentes de C1 son sintetizados por las células epiteliales del intestino y del sistema genito-urinario y los adipocitos sintetizan factor D. Se ha observado que los macrófagos activados producen algunos factores del complemento; sin embargo, esto solo tiene importancia, en el foco inflamatorio. Las citocinas inflamatorias (IL1, IL6 y TNF) e IFN-gamma incrementan la síntesis de algunos factores del complemento en el hígado.



CASCADAS
Está formado por unas 30 glucoproteínas y fragmentos que se encuentran en el suero y otros líquidos orgánicos de forma inactiva, y que al activarse de forma secuencial, median una serie de reacciones con la finalidad de destruir la célula diana. El sistema se activa por tres vías diferentes.

VIA CLASICA
Denominada así porque se descubrió primero. Su activación es iniciada por inmunocomplejos formados por IgG (Inmunoglobulina G) e IgM (Inmunoglobulina M). Esta vía se inicia con la unión de dos (en el caso de la participación de IgG) o más (en el caso de IgM) moléculas de inmunoglobulinas unidas a los antígenos respectivos al producirse cambios alostéricos en el extremo Fc.
Factor C1
El factor C1 está compuesto por tres subunidades proteicas (q, r y s), que en el momento de la activación del complemento se unen entre sí por enlaces dependientes del Ca++ formando un complejo constituido con una unidad de C1q, 2 de C1r y 2 de C1s (C1qr2s2).
La molécula C1q es una proteína con dos partes bien diferenciadas, globular y fibrilar. Parece ser que en las porciones globulares se encuentran los sitios de combinación con el anticuerpo con los que se une  solo cuando éste está unido al Ag. Las porciones fibrilares poseen una estructura química que guarda similitud con el colágeno, con gran cantidad de aminoácidos hidroxilados que unen disacáridos de glucosa y galactosa. El  complejo molecular C1q está integrado por 18 cadenas polipeptídicas organizadas en seis  subunidades idénticas. 
Activación de C1
La subunidad C1q se fija al anticuerpo en los sitios de unión que son el dominio CH2 de la IgG y el CH3 y/o CH4 de la IgM). Este fenómeno es el primero que ocurre en la activación mediada por anticuerpos de la vía clásica del complemento y es el que pone en marcha la cascada de reacciones subsiguientes. El fragmento C1q va a activar a las dos subunidades C1r, que actuará sobre las dos C1s que, entonces, adquieren actividad de esterasa de tipo serina, responsable de iniciar las fases siguientes.
Para que se produzca la activación de C1q, éste debe estar unido por su región globular al menos a dos dominios de distinta fracción Fc. Esto implica que los anticuerpos, para activar al complemento, han de encontrarse con la disposición espacial apropiada que permita a C1q acoplarse a varios de ellos al mismo tiempo (complejos Ag-Ac dispersos sobre una  superficie celular pueden no llegar a activar el complemento). C1q, por otra parte, solo se une a inmunoglobulinas cuando éstas, a su vez, se encuentran unidas a sus antígenos y éstos están integrados en una misma superficie (membrana celular). Este concepto es importante para comprender por qué complejos antígeno-anticuerpo solubles no conectados con membranas, pueden convivir en el suero con los factores del complemento sin llegar a activarlos y que, por el contrario, si se activan cuando tales complejos quedan  atrapados sobre algún tejido, originando, en este caso, un proceso inflamatorio localizado.
La activación de C1q provoca que una molécula de C1r del complejo C1qr2s2 pierda por autocatálisis un trozo de bajo peso molecular, quedando activada. Esta molécula, a su vez, activa a la otra molécula de C1r. Las dos moléculas de C1r atacan a las dos moléculas de C1s liberando sendos trozos de bajo peso molecular y dejando expuestos sus dominios catalíticos.
La MBP (mannose-binding protein) es una molécula del grupo de las colectinas (proteínas con colas de colágeno y dominios globulares de tipo lectina). Esta proteína reconoce carbohidratos en distintos gérmenes, lo que le permite unirse a ellos y tiene la capacidad de sustituir a C1q en la activación de C1r y C1s, pudiendo iniciar de esta forma la vía clásica. A su vez, la MASP (MBP associated binding protease) es una proteasa de tipo serina que puede sustituir a C1r y C1s en la activación de la vía clásica. Estos resultados han determinado que algunos autores hablen de una tercera vía de activación del complemento: La Vía de la Lectina. 

Activación de C4 y C2
C1s del complejo C1q2r2s va a actuar sobre la cadena a de C4 produciendo su escisión en dos moléculas, una pequeña, C4a, que difunde a la fase fluida y otra mayor, C4b, que se une por enlace covalente de tipo éster o amida (equivalente al del C3b) a la superficie celular. Esta fracción C4b unida a la membrana, en presencia de iones Mg++, forma un complejo con la fracción C2. C1s también actúa sobre C2, provocando la escisión de esta molécula en dos fragmentos, uno menor C2b y otro mayor C2a. Este último  se une al C4b para formar el  complejo C4b2a (convertasa C3 de la vía clásica), que tiene actividad esterásica.
Convertasa de C5 de la vía clásica
El complejo C4b2a, cuyo centro activo se encuentra en el componente C2a, actúa sobre la cadena a del factor C3 que se transforma por proteolisis en dos fragmentos activos: la anafilotoxina C3a, que pasa al medio líquido, y el fragmento C3b que se une a la membrana celular mediante un enlace de tipo éster o amida. Al complejo formado por C4b2a3b se le denomina convertasa de C5 de la vía clásica ya que tiene capacidad de actuar sobre este factor, siendo éste el primer paso de la denominada vía lítica.
El factor C3b unido a la membrana celular también puede ser captado por los fagocitos, que al presentar receptores de membrana para C3b, se facilita de esta forma el proceso de la fagocitosis (opsonización).
La anafilotoxina C3a, por otra parte, potencia la inflamación al inducir la desgranulación de los basófilos y mastocitos y liberar, por tanto, mediadores de la inflamación. El incremento de la permeabilidad capilar facilita el acceso al foco de nuevos factores del complemento y de inmunoglobulinas desde la sangre, así como la llegada de fagocitos que son movilizados por la actividad quimiotáxica del propio C3a y otros factores quimiotáxicos del foco inflamatorio.


VÍA ALTERNATIVA
Filogenéticamente más primitiva, su activación fundamental no es iniciada por inmunoglobulinas, sino por polisacáridos y estructuras poliméricas similares (lipopolisacáridos bacterianos, por ejemplo los producidos por bacilos gram negativos). Esta vía constituye un estado de activación permanente del componente C3 que genera C3b. En ausencia de microorganismos o antígenos extraños, la cantidad de C3b producida es inactivada por el Factor H. Cuando C3 se une a una superficie invasora (evade la acción del Factor H), forma un complejo con el Factor B, el cual se fragmenta por acción del factor D en presencia de Mg++. El complejo C3bBb es altamente inestable y la vía alterna no continúa sin el rol estabilizador de una proteína circulante llamada properdina. Se forma de ese modo la C3 convertasa de la via alterna (compuesta por C3bBb), la cual actúa enzimáticamente sobre moléculas adiccionales de C3, amplificando la cascada. Incluso algo de este C3b se puede unir a la C3 convertasa y formar la C5 convertasa de la via alterna (C3bBb3b) que activara a C6, convergiendo en los mismos pasos finales de la vía clásica.

La vía alternativa en estado de reposo

En condiciones normales, en el plasma, el factor C3 se escinde continuamente y de forma lenta, en un proceso que se denomina marcapasos de C3, dando lugar a C3b y quedando así su enlace tioéster interno expuesto. Si no se une a la superficie de algún microorganismo C3b permanece en fase fluida y se combina con una molécula de agua, quedando así su enlace tioéster hidrolizado y el C3b inactivo. El factor B es equivalente al factor C2 de la vía clásica.
El factor D circula en la sangre de forma activada aunque no es perjudicial para el organismo, debido a su baja concentración. Este factor tiene actividad esterasa de tipo serina y uniéndose al complejo C3bB rompe a B en una pequeña fracción, Ba, que se libera y en una de mayor peso molecular, Bb, que se mantiene unida al complejo (C3bBb). Este complejo, que permanece en la fase fluida, tiene actividad convertasa de C3 de la vía alternativa, es decir que puede degradar a C3 en dos fracciones: C3a y C3b, radicando la actividad proteolítica del complejo en la molécula Bb.
El factor C3b puede unirse covalentemente mediante enlace éster o amida a las membranas celulares, incluso a las propias, captando más factor B y amplificando el proceso, lo que permitiría la entrada en la vía lítica. No obstante, en condiciones normales o de reposo, esto no ocurre ya que C3b tiene una vida media muy corta. Por otra parte, los sistemas de regulación que se comentarán más abajo mantienen en un bajo nivel el funcionamiento de este circuito.

Amplificación de la vía alternativa

Cuando C3b se une a las membranas de bacterias, hongos y parásitos, los mecanismos de regulación que bloquean la amplificación en el estado de reposo no funcionan. El factor C3b sobre estas membranas capta factor B formando el complejo C3bB sobre el que actúa el factor D liberando Ba y quedando el complejo C3bBb que tiene actividad convertasa de C3, siendo Bb la molécula responsable de la actividad proteolítica. Esa convertasa libera más factor C3b que al formar C3bBb3b retroalimenta el circuito y consigue su amplificación.
El complejo C3bBb3b además puede actuar sobre C5 (C3bBb3b es la convertasa de C5 de la vía alternativa) e iniciar la vía lítica que lleva a la lisis de los gérmenes. C3b puede unirse a receptores en la membrana de los fagocitos lo que favorece la fagocitosis. Por otra parte el fragmento C3a, por su actividad de anafilotoxina, activa mastocitos y basófilos, induciendo la liberación de mediadores químicos por parte de estas células, lo que potencia la inflamación.
VÍA DE LAS LECTINAS

Es una especie de variante de la ruta clásica, sin embargo se activa sin la necesidad de la presencia de anticuerpos.Se lleva a cabo la activación por medio de una MBP (manosa binding protein/proteína de unión a manosa) que detecta residuos de este azúcar en la superficie bacteriana, y activa al complejo C1qrs. De otra manera, una segunda esterasa, la esterasa asociada a MBP (denominada MASP, y de las cuales existen diferentes tipos: MASP-1, MASP-2, MASP-3 y MAP, siendo MASP-2 la más común) actúa sobre C4. El resto de la via es similar a la clásica.

Estas vías producen una enzima con la misma especificidad: C3; y a partir de la activación de este componente siguen una secuencia terminal de activación común. El propósito de este sistema de complemento a través de sus tres vías es la destrucción de microorganismos, neutralización de ciertos virus y promover la respuesta inflamatoria, que facilite el acceso de células del sistema inmune al sitio de la infección.


ACTIVACION DEL COMPLEMENTO
En la activación del complemento se pone en marcha una serie de reacciones consecutivas encascada, de tal forma que a partir de cada una de ellas se genera un producto activo que además de determinar que la reacción consecutiva prosiga, puede tener diferentes acciones biológicas importantes en la defensa del organismo.

Algunos de los factores del complemento son enzimas con carácter proteolítico, de tal forma que durante el proceso de activación, algunas moléculas son rotas en fragmentos a los que para identificarlos se les añade letras minúsculas (Ej. C3a, C3b). Estos fragmentos poseen importanes funciones biológicas y son mediadores de la inflamación.
La activación del complemento puede iniciarse por dos vías: la vía clásica y la vía alternativa. La vía clásica se activa por la unión antígeno-anticuerpo, mientras que la vía alternativa se activa por productos bacterianos. En ambas vías el factor C5 se transforma en C5b lo que permite, en uno y otro caso, poder entrar en la vía terminal o lítica que conduce a la lisis celular o bacteriana.
Una vez producida la activación del complemento, toda la serie de reacciones subsiguientes se llevan a cabo por un proceso multiplicador, de tal forma que, aunque la activación comienza por un número limitado de moléculas, son muchos los factores con actividad biológica que aparecen en el curso de las reacciones. La acción de las moléculas puede ser local, en el sitio de su producción, pero también puede ejercerse a distancia por dispersión a otras zonas. Un esquema general de las reacciones del complemento en su conjunto es complejo.
LAS FUNCIONES DEL SISTEMA DEL COMPLEMENTO
A. Lisis de células: El MAC (membrana attack complex/complejo de ataque a la membrana) puede lisar bacterias gram-negativas, parásitos, virus encapsulados, eritrocitos y células nucleadas. Las bacterias gram-positivas son bastante resistentes a la acción del complemento.

B. Respuesta inflamatoria: Los pequeños fragmentos que resultan de la fragmentación de componentes del complemento, C3a, C4a y C5a, son llamados  anafilotoxinas. Estas se unen a receptores en células cebadas y basófilos. La interacción induce su degranulación, liberando histamina y otras sustancias farmacológicamente activas. Estas sustancias aumentan la permeabilidad y vasodilatacion. Así mismo, C3a, C5a y C5b67 inducen monocitos y neutrófilos a adherirse al endotelio para iniciar su extravasación.

C. Opsonización: C3b es la opsonina principal del complemento. Los antígenos recubiertos con C3b se unen a receptores específicos en células fagocíticas, y así la fagocitosis es facilitada.

D. La neutralización de virus: C3b induce la agregación de partículas virales formando una capa gruesa que bloquea la fijación de los virus a la célula hospedera. Este agregado puede ser fagocitado mediante la interacción de receptores del complemento y C3b en células fagocíticas.

E. Eliminación de complejos inmunes: Los complejos inmunes (complejos antígeno-anticuerpo circulantes) pueden ser eliminados de la circulación si el complejo se une a C3b. Los eritrocitos tienen receptores del complemento que interactúan con los complejos inmunes cubiertos por C3b y los lleva al hígado y al bazo para su destrucción.

 

Uso de las TIC´S
Los Tics nos han ayudado, ya que con esté medio hemos podido realizar trabajos e investigaciones, pues mediante internet podemos despejar nuestras dudas, debido a que se encuentra mucha información de calidad; por lo que los Tics son de gran ayuda en este siglo XXI. Y esto se logra con las Tecnologías tan avanzadas: La computadora.

Links visitados:

2 comentarios:

  1. La informacion de este blog esta muy completa, solo te sugeriria que elfondo del blog fuera en otro color, ya que algunas partes del texto no se visualiza lo que se expresa.

    ResponderEliminar
  2. Muy bien su resumen jóvenes.
    Los felicito.
    Sonia

    ResponderEliminar